Объектно-ориентированное проектирование с примерами

Синхронизация


При разработке любого универсального инструментального средства должны учитываться проблемы, связанные с организацией параллельных процессов. В операционных системах типа UNIX, OS/2 и Windows NT приложения могут запускать несколько "легких" процессов ["Легким" называется процесс, который исполняется в том же адресном пространстве, что и другие. В противоположность им существуют "тяжелые" процессы; их создает, например, функция fork в UNIX. Тяжелые процессы требуют специальной поддержки операционной системы для организации связи между собой. Для C++ библиотека AT&T предлагает "полупереносимую" абстракцию легких процессов для UNIX. Легкие процессы непосредственно доступны в OS/2 и Windows NT. В библиотеку классов Smalltalk включен класс Process, реализующий поддержку легких процессов]. В большинстве случаев классы просто не смогут работать в такой среде без специальной доработки: когда две задачи взаимодействуют с одним и тем же объектом, они должны делать это согласованно, чтобы не разрушить состояния объекта. Как уже отмечалось, существуют два подхода к задаче управления процессами; они находят свое отражение в существовании защищенной и синхронизированной форм класса.

При разработке данной библиотеки было сделано следующее предположение: разработчики, планирующие использовать параллельные процессы, должны импортировать либо разработать сами по крайней мере класс Semaphore (семафор) для синхронизации легких процессов. Разработчики, которые не хотят связываться с параллельными процессами, будут свободны от необходимости поддерживать защищенные или синхронизованные формы классов (таким образом, не потребуется никаких дополнительных издержек). Защищенные и синхронизированные формы изолированы в библиотеке и основываются на своей внутренней реализации параллелизма. Единственная зависимость от локальной реализации сосредоточена в классе Semaphore, который имеет следующий интерфейс:

class Semaphore {


public:

Semaphore();



Semaphore(const Semaphore&);

Semaphore(unsigned int count);

~Semaphore();

void seize(); // захватить

void release(); // освободить

unsigned int nonePending() const;

protected:

};

Так же, как и при управлении памятью, мы разделяем политику синхронизации процессов и ее реализацию. По этой причине в аргументы шаблона для каждой защищенной формы включен класс Guard (страж), ответственный за связь с локальной реализацией класса Semaphore или его эквивалента. Аргументы шаблона для каждой из синхронизированных форм содержат класс Monitor, который близок по своим функциональным свойствам к классу Semaphore, но, как будет видно в дальнейшем, обеспечивает более высокий уровень параллелизма процессов.

Как показано на рис. 9-3, защищенный класс является прямым подклассом своего конкретного ограниченного либо неограниченного класса и содержит в себе объект класса Guard. Все защищенные классы имеют общедоступные функции-члены seize (захватить) и release (освободить), позволяющие получить эксклюзивный доступ к объекту. Рассмотрим в качестве примера класс GuardedUnboundedQueue, производный от UnboundedQueue:

template<class Item, class StorageManager, class Guard>

class GuardedUnboundedQueue : public UnboundedQueue<Item, StorageManager> {
public: GuardedUnboundedQueue();
virtual ~GuardedUnboundedQueue();
virtual void seize();
virtual void release();

protected: Guard guard;

};




В нашей библиотеке предусмотрен интерфейс одного из предопределенных классов защиты: класса semaphore. Пользователи могут дополнить реализацию данного класса в соответствии с локальным определением легкого процесса.

На рис. 9-10 приведена схема работы данного варианта синхронизации; клиенты, использующие защищенные объекты, должны придерживаться простого алгоритма: сначала захватить объект для эксклюзивного доступа, провести над ним нужную работу, и после ее окончания снять защиту (в том числе в тех случаях, когда возникла исключительная ситуация). Другая схема поведения рассматривается как социально неприемлемая, поскольку претензии одного агента не позволят правильно работать другим.


Если мы, например, не снимем защиту после окончания работы с объектом, больше никто не сможет получить к нему доступ; попытка снятия защиты с объекта, к которому в данный момент никто не имел эксклюзивного доступа, также может привести к нежелательным последствиям. Игнорирование этого протокола просто безответственно, поскольку оно может разрушить состояние объекта, с которым одновременно работают несколько агентов.



Рис. 9-10. Процессы защищенного механизма.

Основное преимущество защищенной схемы - ее простота. В то же время для агентов, производящих операции над одним и тем же объектом, использование данной модели обуславливает необходимость выполнения определенных коллективных действий. Другая особенность защищенных форм состоит в том, что она дает возможность агентам выделять критически важные моменты, когда несколько операций, произведенных над объектом, будут гарантированно интерпретироваться как одна атомарная транзакция.

Подобно механизму управления памятью, сигнатура шаблона защищенной формы импортирует стража, а не превращает его в неизменяемую характеристику. Это позволяет пользователям ввести новую политику синхронизации. При использовании в качестве стража предопределенного класса Semaphore, стандартная политика синхронизации подразумевает, что каждому объекту ставится в соответствие свой семафор. Данное решение приемлемо только до тех пор, пока количество параллельных процессов не достигнет некоторого критического значения.

Альтернативный подход подразумевает возможность обслуживания одним семафором сразу нескольких защищенных объектов. Разработчику при этом нужно только создать новый класс-страж, имеющий тот же протокол, что и semaphore (но не обязательно являющийся его подклассом). Этот класс может содержать семафор в качестве статического члена; тогда семафор будет совместно использоваться всеми экземплярами класса. Инстанцируя защищенную форму с этим новым стражем, разработчик библиотеки вводит новую политику, поскольку все объекты инстанцированного класса пользуются общим стражем, вместо выделения отдельного стража каждому объекту.


Преимущество данной схемы наиболее ясно проявляется, когда новый класс-страж используется для инстанцирования других структур: все полученные объекты будут работать с одним и тем же стражем. Таким образом, на первый взгляд незначительное изменение политики приводит не только к уменьшению количества параллельных процессов, но также позволяет клиенту блокировать целую группу объектов, несвязанных напрямую. Захват одного объекта автоматически блокирует доступ и ко всем остальным структурам, имеющим того же стража, даже если это структуры различного типа.

Синхронизированный класс, являясь прямым подклассом какого-либо конкретного ограниченного или неограниченного класса, содержит в себе объект-монитор, протокол которого можно описать следующим абстрактным базовым классом:

class Monitor {
public: Monitor();
Monitor(const Monitor&);
virtual ~Monitor();
virtual void seizeForReading() = 0;
virtual void seizeForWriting() = 0;
virtual void releaseFromBeadingt() = 0;
virtual void releaseFromWritingt() = 0;

protected:
...
};


С помощью мониторов можно реализовать два типа синхронизации:
 
• Одиночная Гарантирует семантику структуры в присутствии нескольких потоков управления, но с одним читающим или одним записывающим.
• Множественная Гарантирует семантику структуры в присутствии нескольких потоков управления, с несколькими читающими или одним записывающим.
 
Агент записи меняет состояние объекта; агенты записи вызывают функции-модификаторы. Агент чтения сохраняет состояние объекта; он вызывает только функции-селекторы. Как видно, множественная форма синхронизации обеспечивает наивысшую степень параллелизма процессов. Мы можем реализовать обе политики в виде подклассов абстрактного базового класса Monitor. Обе формы можно построить на основе класса Semaphore.

В отличие от защищенных форм, синхронизованные классы не содержат дополнительных функций-членов по сравнению со своим суперклассом: они просто переопределяют все виртуальные функции суперкласса.


Семантика, вносимая синхронизированным классом, заставляет трактовать каждую такую функцию как атомарную транзакцию. В то время, как клиенты защищенного объекта должны для получения эксклюзивного доступа каждый раз явно захватывать и освобождать доступ, синхронизированные формы обеспечивают эксклюзивность доступа, не требуя специальных действий со стороны своих клиентов.

Это достигается с помощью механизма блокировки, схема работы которого приведена на рис. 9-11. Взаимодействие мониторов с экземплярами предопределенных классов ReadLock и WriteLock обеспечивает эксклюзивность вызова каждой функции-члена. В этом механизме блокировка использует либо семафор, либо монитор в качестве агента, ответственного за процесс синхронизации, а сама блокировка отвечает за захват этого агента при создании и освобождение при удалении. В качестве примера рассмотрим определение класса ReadLock:

class ReadLock {

public:

ReadLock (const Monitor& m) : monitor(m) { monitor.seizeForReading(); }

~ReadLock() { monitor.releaseFromReading(); }

private:

Monitor& monitor;

};

 



Рис. 9-11. Механизм блокировки.

Определив блокировку и ее монитор как две отдельные абстракции, мы дали клиенту возможность использовать различные политики блокировки. Описание класса WriteLock аналогично, разница лишь в том, что он использует протокол монитора для записи.

Описания всех функций-членов синхронизированного класса используют блокировки для "оборачивания" операций, унаследованных из суперкласса. Рассмотрим в качестве примера реализацию функции length для синхронизированной неограниченной очереди:

template<class Item, class StorageManager, class Monitor>

unsigned int SynchronizedUnboundedQueue<Item, StorageManager,

Monitor>::length() const

{

ReadLock lock(monitor);

return UnboundedQueue<Item, StorageManager>::length();

}

Данный фрагмент кода иллюстрирует механизм, приведенный на рис. 9-11. Как правило, объекты класса ReadLock используются для всех синхронизированных селекторов, а экземпляры WriteLock - для синхронизированных модификаторов.


Простота и элегантность подобной архитектуры проявляется в том, что каждая функция представляет собой законченную операцию, в любом случае гарантирующую сохранность состояния объекта, причем без каких-либо явных действий со стороны агентов чтения/записи.

Действительно, клиенты, работающие с синхронизированными объектами, не должны придерживаться специальной последовательности действий, так как механизм синхронизации процессов поддерживается здесь в неявном виде. Это исключает появление ошибок типа неверной блокировки. Разработчику следует, однако, предпочитать защищенную форму синхронизированной, когда вызов нескольких функций нужно оформить как атомарную транзакцию; синхронизированная форма может гарантировать атомарность только отдельных функций-членов.

Наша архитектура обеспечивает синхронизированным формам отсутствие ситуаций типа "смертельное объятие". Например, операции присваивания объекта самому себе или сравнения его с самим собой потенциально опасны, так как требуют блокировки и левого и правого элементов выражения, которые в данном случае являются одним и тем же объектом. Будучи создан, объект не может изменить свою идентичность, поэтому тесты на самоидентичность выполнятся до блокировки какого-либо объекта. Именно поэтому описанный ранее оператор присваивания operator= включал такую проверку, как показывает следующая сокращенная запись:

template<class Item>

Queue<Item>& Queue<Item>::operator=(const Queue<Item>& q)

{

if (this == &q) return *this;

}

Любые функции-члены, среди аргументов которых есть экземпляры класса, к которому они принадлежат, должны проектироваться так, чтобы обеспечивалась корректная схема блокировки этих аргументов. Наше решение базируется на полиморфизме двух служебных функций, lock и unlock, определенных в каждом абстрактном базовом классе. Каждый абстрактный базовый класс по умолчанию содержит заглушку для этих двух функций; синхронизированные формы обеспечивают захват и освобождение аргумента.Вот почему описанный ранее оператор присваивания operator= включал вызовы этих двух функций, как показывает следующая сокращенная запись:

template<class Item>

Queue<Item>& Queue<Item>::operator=(const Queue<Item>& q)

{

((Queue<Item>&)q).lock();

((Queue<Item>&)q).unlock();

return *this;

}

Явное приведение типа используется в данном случае для того, чтобы освободиться от ограничения const на аргумент.

9.3. Эволюция


Содержание раздела